Sparsity-promoting dynamic mode decomposition

نویسندگان

  • Mihailo R. Jovanović
  • Peter J. Schmid
  • Joseph W. Nichols
چکیده

Sparsity-promoting dynamic mode decomposition Mihailo R. Jovanović,1,a) Peter J. Schmid,2,b) and Joseph W. Nichols3,c) 1Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA 2Laboratoire d’Hydrodynamique (LadHyX), Ecole Polytechnique, 91128 Palaiseau cedex, France 3Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Dynamic Mode Decomposition

Dynamic mode decomposition (DMD) is a datadriven method for calculating a modal representation of a nonlinear dynamical system, and it has been utilized in various fields of science and engineering. In this paper, we propose Bayesian DMD, which provides a principled way to transfer the advantages of the Bayesian formulation into DMD. To this end, we first develop a probabilistic model correspon...

متن کامل

An Intelligent Machine Learning-Based Protection of AC Microgrids Using Dynamic Mode Decomposition

An intelligent strategy for the protection of AC microgrids is presented in this paper. This method was halving to an initial signal processing step and a machine learning-based forecasting step. The initial stage investigates currents and voltages with a window-based approach based on the dynamic decomposition method (DDM) and then involves the norms of the signals to the resultant DDM data. T...

متن کامل

Exploiting sparsity and sharing in probabilistic sensor data models

Probabilistic sensor models defined as dynamic Bayesian networks can possess an inherent sparsity that is not reflected in the structure of the network. Classical inference algorithms like variable elimination and junction tree propagation cannot exploit this sparsity. Also, they do not exploit the opportunities for sharing calculations among different time slices of the model. We show that, us...

متن کامل

Optimal Decentralized State-Feedback Control with Sparsity and Delays

This work presents the solution to a class of decentralized linear quadratic state-feedback control problems, in which the plant and controller must satisfy the same combination of delay and sparsity constraints. Using a novel decomposition of the noise history, the control problem is split into independent subproblems that are solved using dynamic programming. The approach presented herein bot...

متن کامل

Multidimensional Compressed Sensing MRI Using Tensor Decomposition-Based Sparsifying Transform

Compressed Sensing (CS) has been applied in dynamic Magnetic Resonance Imaging (MRI) to accelerate the data acquisition without noticeably degrading the spatial-temporal resolution. A suitable sparsity basis is one of the key components to successful CS applications. Conventionally, a multidimensional dataset in dynamic MRI is treated as a series of two-dimensional matrices, and then various ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014