Sparsity-promoting dynamic mode decomposition
نویسندگان
چکیده
Sparsity-promoting dynamic mode decomposition Mihailo R. Jovanović,1,a) Peter J. Schmid,2,b) and Joseph W. Nichols3,c) 1Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA 2Laboratoire d’Hydrodynamique (LadHyX), Ecole Polytechnique, 91128 Palaiseau cedex, France 3Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA
منابع مشابه
Bayesian Dynamic Mode Decomposition
Dynamic mode decomposition (DMD) is a datadriven method for calculating a modal representation of a nonlinear dynamical system, and it has been utilized in various fields of science and engineering. In this paper, we propose Bayesian DMD, which provides a principled way to transfer the advantages of the Bayesian formulation into DMD. To this end, we first develop a probabilistic model correspon...
متن کاملAn Intelligent Machine Learning-Based Protection of AC Microgrids Using Dynamic Mode Decomposition
An intelligent strategy for the protection of AC microgrids is presented in this paper. This method was halving to an initial signal processing step and a machine learning-based forecasting step. The initial stage investigates currents and voltages with a window-based approach based on the dynamic decomposition method (DDM) and then involves the norms of the signals to the resultant DDM data. T...
متن کاملExploiting sparsity and sharing in probabilistic sensor data models
Probabilistic sensor models defined as dynamic Bayesian networks can possess an inherent sparsity that is not reflected in the structure of the network. Classical inference algorithms like variable elimination and junction tree propagation cannot exploit this sparsity. Also, they do not exploit the opportunities for sharing calculations among different time slices of the model. We show that, us...
متن کاملOptimal Decentralized State-Feedback Control with Sparsity and Delays
This work presents the solution to a class of decentralized linear quadratic state-feedback control problems, in which the plant and controller must satisfy the same combination of delay and sparsity constraints. Using a novel decomposition of the noise history, the control problem is split into independent subproblems that are solved using dynamic programming. The approach presented herein bot...
متن کاملMultidimensional Compressed Sensing MRI Using Tensor Decomposition-Based Sparsifying Transform
Compressed Sensing (CS) has been applied in dynamic Magnetic Resonance Imaging (MRI) to accelerate the data acquisition without noticeably degrading the spatial-temporal resolution. A suitable sparsity basis is one of the key components to successful CS applications. Conventionally, a multidimensional dataset in dynamic MRI is treated as a series of two-dimensional matrices, and then various ma...
متن کامل